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Iowa chlamydia data

The State Hygienic Laboratory at the University of Iowa tests
thousands of Iowa residents each year for chlamydia

2014: N = 13862 female subjects

endocervical swab (about 70 percent)
urine

Swab specimens are combined and tested in pools

usually of size c = 4
positive pools resolved by testing each specimen individually

Urine specimens are tested individually
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Group testing

General premise: tests are performed on “pools” of individual
specimens (e.g., swabs, urine, blood, etc.)

positive pool: at least one individual in the pool is positive
negative pool: all individuals in the pool are negative

Used to test/screen for a variety of infections

syphilis (Dorfman, 1943)
HIV, HCV, HBV
chlamydia, gonorrhea
influenza

Cost-efficient alternative to testing subjects individually

SHL: saves approximately $600,000 each year by pooling
specimens

Case identification versus estimation
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Iowa State Hygienic Laboratory

CT testing

Tecan pipettes 4 specimens at a time

Entire process automated
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Iowa State Hygienic Laboratory

Great colleagues at SHL!

Wade Aldous (Associate Lab
Director)

Kris Eveland (Lab
Technician)
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Dorfman (two-stage hierarchical) testing

1 2 3 4

1, 2, 3, 4

Z1

Z2 Z3 Z4 Z5

Master pool tested in first
stage

Individual testing in second
stage (if necessary)

Most common case
identification protocol

Iowa SHL; other labs
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Three-stage hierarchical testing

1 2 3 4

1, 2 3, 4

1, 2, 3, 4

Z1

Z2 Z3

Z4 Z5 Z6 Z7

Master pool tested in first
stage

Subpools tested in second
stage (if necessary)

Individual testing in third
stage (if necessary)

Why make more
complicated?

reduces number of tests
when prevalence is small
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Array testing (in two dimensions)

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Z1

Z2

Z3

Z4

Z5 Z6 Z7 Z8

Individual specimens placed
in the cells of an array

First stage: Test row and
column master pools

rows give Z1,Z2,Z3,Z4

columns give
Z5,Z6,Z7,Z8

Individual retests (if
necessary) in second stage
give Z9,Z10,Z11...,
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Objectives

Develop a general regression framework to relate an

individual’s true status Ỹi to covariates in a regression model

covariates measured on each individual
don’t get to observe Ỹi , i = 1, 2, ...,N

We get to observe the testing responses Z = (Z1,Z2, ...,ZJ)′

could arise from master pools, subsets of master pools, and/or
individuals

Also want to estimate assay sensitivity and specificity

allow sensitivity and specificity to change with pool size
even allow for multiple assays to be used during the screening
process

Joshua M. Tebbs Bayesian regression for group testing data 9/24



Notation and assumptions

Ỹi = disease status (1/0); xi covariate vector; i = 1, 2, ...,N

Pj ⊂ {1, 2, ...,N} = set of indices identifying which
individuals belong to the jth pool, j = 1, 2, ..., J.

Example: P1 = {1, 2, 3, 4}, P2 = {1, 2}, P3 = {3, 4},
P4 = {1}, P5 = {2}

Z̃j = 1 if Pj is truly positive; Zj = 1 if Pj tests positively

Sej = pr(Zj = 1|Z̃j = 1)

Spj = pr(Zj = 0|Z̃j = 0)

GLM: pr(Ỹi = 1|xi ,β) = g−1(x′iβ)

if we had the Ỹi ’s, we could estimate the model directly
we only have the Zj ’s (testing responses)
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Notation and assumptions

Assume the Ỹi ’s are conditionally independent given the
covariates

The conditional distribution of Z can be written as

π(Z|Se ,Sp ,X,β) =
∑

Ỹ∈{0,1}N


J∏

j=1

{SZj
ej (1− Sej )

1−Zj }Z̃j {(1− Spj )
Zj S

1−Zj
pj }1−Z̃j

×
N∏
i=1

{g−1(x′iβ)}
Ỹi {1− g−1(x′iβ)}

1−Ỹi

}

Inside the brackets: π(Z, Ỹ|Se ,Sp,X,β)
First product: Contribution of observed testing responses
Second product: Contribution of individual (latent) statuses
Observed data likelihood of β if Se and Sp are known
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Bayesian estimation

Assume Se and Sp are known (relax later)

π(β) = prior distribution for β; e.g., β ∼ Nr+1(a,R)

π(Ỹ,β|Z,Se ,Sp,X) ∝ π(Z, Ỹ|Se ,Sp,X,β)π(β)︸ ︷︷ ︸
(∗)

(∗) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

N∑
i=1

Ỹiθi − b(θi )

}

×
J∏

j=1

{SZj
ej (1− Sej )

1−Zj }Z̃j {(1− Spj )
ZjS

1−Zj
pj }1−Z̃j ,

where θi = log[g−1(x′iβ)/{1− g−1(x′iβ)}], b(x) = log{1 + exp(x)}

If the Ỹi ’s were observed, sampling β could be done by using
any Bayesian method for binary regression
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Bayesian estimation

Because we are estimating a GLM, we used Gamerman’s
(1997) MH algorithm because it is easier; can just work with

π(β|Ỹ,X) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

N∑
i=1

Ỹiθi − b(θi )

}

From π(Ỹ,β|Z,Se ,Sp,X), we can work out

Ỹi |Z, Ỹ−i ,Se ,Sp,X,β ∼ Bernoulli{p∗i1/(p∗i0 + p∗i1)}, where

p∗i1 = g−1(x′i β)
∏

j∈Ai

S
Zj
ej

(1− Sej )
1−Zj

p∗i0 = {1−g−1(x′i β)}
∏

j∈Ai

{S
Zj
ej

(1−Sej )
1−Zj }

I (
∑

i′∈Pij
Ỹi′>0)

{(1−Spj )
Zj S

1−Zj
pj

}
I (
∑

i′∈Pij
Ỹi′=0)

,

where the sets Ai = {j : i ∈ Pj} and Pij = {i ′ ∈ Pj : i ′ 6= i}
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Bayesian estimation

Key point: All one needs to do is simply keep track of which
individuals are in which pools

POSTERIOR SAMPLING ALGORITHM

1 Initialize β(0) and Ỹ
(0)
i = 0, i = 1, 2, ...,N; set t = 1

2 Sample Ỹ
(t)
i ∼ Bernoulli{p∗i1/(p∗i0 + p∗i1)}, i = 1, 2, ...,N

3 Sample β(t) from π(β|Ỹ(t),X)

4 Set t = t + 1; repeat steps 2 and 3

This posterior sampling algorithm is extremely fast

all unknown quantities are updated using standard distributions
invariant to group testing protocol
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Unknown assay accuracy probabilities

Allow Se and Sp to be unknown

Previous regression methods largely assume Sej = Se and
Spj = Sp, j = 1, 2, ..., J

Se and Sp are usually estimated using pilot studies performed
by assay manufacturers

these estimates are determined from testing individuals−not
pools

Goal: We want a flexible framework:

allow sensitivity and specificity to change with pool size
allow for multiple assays to be used during the testing process

e.g., screening tests for pools; confirmatory tests for
individuals
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Unknown assay accuracy probabilities

Let Se(l) and Sp(l) denote the sensitivity and specificity
associated with the lth assay, l = 1, 2, ..., L

Define

M(l) = {j : the lth assay was used to test the jth pool}

Introduce independent prior distributions π(Se(l)) and
π(Sp(l)), l = 1, 2, ..., L

π(Ỹ,Se ,Sp,β|Z,X) ∝ π(Z, Ỹ|Se ,Sp,X,β)π(β)
L∏

l=1

π(Se(l))π(Sp(l))

Se(l) ∼ beta(aSe(l)
, bSe(l)

)
Sp(l) ∼ beta(aSp(l)

, bSp(l)
)

Se(l)|Z, Ỹ and Sp(l)|Z, Ỹ also beta

Augment posterior sampling algorithm: Add 1 extra step
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Simulation study

Model: logit{pr(Ỹi = 1|xi1, xi2)} = β0 + β1xi1 + β2xi2

β = (β0, β1, β2)′ = (−3, 2,−1)′

xi1 ∼ N (0, 1) and xi2 ∼ Bernoulli(0.5)
Population prevalence: about 10 percent

Three group testing procedures: MPT, DT, and AT

N = 5000 individuals (assign to master pools at random)

common master pool size c = 5

Three configurations of the assay accuracies
1 common Se and Sp for all tests (known)
2 common Se and Sp for all tests (unknown)
3 different Se and Sp for pools and individuals (unknown)

π(β) ∝ 1 and Se(l), Sp(l) ∼ beta(1, 1) independently
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Se = 0.95 and Sp = 0.98 (common, known)

Parameter Individual MPT DT AT

β0 = −3
Bias (CP95) −0.03 (0.95) −0.04 (0.95) −0.02 (0.95) −0.01 (0.95)
SSD (ESE) 0.13 (0.13) 0.17 (0.17) 0.11 (0.12) 0.11 (0.11)

β1 = 2
Bias (CP95) 0.02 (0.94) 0.04 (0.95) 0.02 (0.95) 0.01 (0.95)
SSD (ESE) 0.10 (0.11) 0.15 (0.15) 0.09 (0.10) 0.09 (0.09)

β2 = −1
Bias (CP95) −0.01 (0.95) −0.03 (0.96) −0.01 (0.96) −0.01 (0.94)
SSD (ESE) 0.14 (0.14) 0.21 (0.22) 0.13 (0.13) 0.13 (0.13)

Average number of tests 5000 1000 2679 (46%) 2787 (44%)

Small bias, good agreement between SSD and ESE, and CP95
within MOE

Interesting: DT and AT give (as good or) better precision
than individual testing!

occurs despite requiring far fewer tests
common theme in group testing: “Get more for less”
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Iowa chlamydia data

N = 13862 female specimens during 2014 (swab/urine)

Data:

2273 swab master pools of size c = 4
12 swab master pools of size c = 3
one swab master pool of size c = 2
416 individual swab specimens
4316 individual urine specimens

Recall: Positive swab master pools resolved using DT

All testing performed using AC2A

pilot data available from product insert; see also Gaydos
(2003); can be used to set informative priors
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Iowa chlamydia data

Six covariates measured on each individual:
1 x1 = age
2 x2 = 1 if the individual is Caucasian (0, otherwise)
3 x3 = 1 if a new sexual partner was reported in the last 90 days
4 x4 = 1 if multiple partners were reported in the last 90 days
5 x5 = 1 if the individual had contact with a partner having any

STD reported in the previous year
6 x6 = 1 if the individual showed symptoms of infection

Population model:

logit{pr(Ỹi = 1|xi )} = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6,

for i = 1, 2, ..., 13862
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Iowa chlamydia data

We envision three sets of assay accuracy probabilities:
1 Se(1) and Sp(1) for swab specimens tested in pools
2 Se(2) and Sp(2) for swab specimens tested individually
3 Se(3) and Sp(3) for urine specimens tested individually

13 parameters to estimate all together

π(β) ∝ 1 and Se(l),Sp(l) ∼ beta(1, 1), for l = 1, 2, 3
40000 posterior draws sampled after a burn-in of 1000 draws
fitting the model took about 7 minutes

Q: Use informative priors for Se(2), Sp(2), Se(3), and Sp(3)?

A: We did and got the same results
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Iowa chlamydia data

Parameter Description Estimate ESE 95% CI

β0 −0.759 0.194 (−1.126, −0.368)
β1 Age −0.071 0.007 (−0.085, −0.058)
β2 Race −0.348 0.081 (−0.505, −0.190)
β3 New partner 0.276 0.070 (0.139, 0.414)
β4 Multiple partners 0.330 0.094 (0.144, 0.513)
β5 Contact with STD 1.408 0.112 (1.189, 1.628)
β6 Symptoms 0.290 0.077 (0.138, 0.439)

Se(1) Swab pool 0.891 0.069 (0.742, 0.995)
Se(2) Swab individual 0.998 0.002 (0.993, 1.000)
Se(3) Urine individual 0.836 0.091 (0.646, 0.987)

Sp(1) Swab pool 0.999 0.001 (0.997, 1.000)
Sp(2) Swab individual 0.978 0.007 (0.964, 0.993)
Sp(3) Urine individual 0.989 0.007 (0.974, 0.999)
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Discussion

We have developed a general regression framework for group
testing data with individually measured covariates

can incorporate historical information
estimate assay accuracy probabilities
invariant to how the data were collected

Modeling extensions:

random effects + variable selection (Biometrics, 2020)
generalized additive regression (Biostatistics, 2021)
multivariate binary response (Biometrics, in revision)
time-to-event response (Biometrika, in revision)

Can re-estimate model as new testing results arrive

useful to implement informative group testing case
identification protocols
perhaps even to detect misdiagnosed individuals

“back-end screening”
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